Short recurrences for computing extended Krylov bases for Hermitian and unitary matrices

نویسندگان

  • Clara Mertens
  • Raf Vandebril
چکیده

It is well known that the projection of a matrix A onto a Krylov subspace span { h, Ah, Ah, . . . , Ak−1h } results in a matrix of Hessenberg form. We show that the projection of the same matrix A onto an extended Krylov subspace, which is of the form span { A−krh, . . . , A−2h, A−1h,h, Ah, Ah . . . , A`h } , is a matrix of so-called extended Hessenberg form which can be characterized uniquely by its QR-factorization. In case A is a Hermitian or unitary matrix, this extended Hessenberg matrix is banded, resulting in short recurrence relations. For the unitary case, coupled two term recurrence relations are derived of which the coefficients capture all information necessary for a sparse factorization of the corresponding extended Hessenberg matrix. This generalizes the approach used by Watkins to retrieve the CMV-form for unitary matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Short Recurrences in Optimal Krylov Subspace Solvers:

To solve large sparse linear systems of equations computational fast methods are preferable above methods such as GMRES. By exploiting structure of the involved matrix one can in certain cases use short recurrences to create an optimal Krylov subspace method. In this report we explain some of the theory regarding short-recurrence methods for solving linear systems. A central object in this theo...

متن کامل

Multiple Recurrences and the Associated Matrix Structures Stemming From Normal Matrices

There are many classical results in which orthogonal vectors stemming from Krylov subspaces are linked to short recurrence relations, e.g., three-terms recurrences for Hermitian and short rational recurrences for unitary matrices. These recurrence coefficients can be captured in a Hessenberg matrix, whose structure reflects the relation between the spectrum of the original matrix and the recurr...

متن کامل

On tridiagonal matrices unitarily equivalent to normal matrices

In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied. It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its superand subdiagonal elements. The corresponding elements of the superand subdiagonal will have the same absolute val...

متن کامل

An Inexact Krylov-Schur Algorithm for the Unitary Eigenvalue Problem

We present an efficient inexact implicitly restarted Arnoldi algorithm to find a few eigenpairs of large unitary matrices. The approximating Krylov spaces are built using short-term recurrences derived from Gragg’s isometric Arnoldi process. The implicit restarts are done by the KrylovSchur methodology of Stewart. All of the operations of the restart are done in terms of the Schur parameters ge...

متن کامل

Computing Approximate Extended Krylov Subspaces without Explicit Inversion

It will be shown that extended Krylov subspaces –under some assumptions– can be retrieved without any explicit inversion or system solves involved. Instead we do the necessary computations of A−1v in an implicit way using the information from an enlarged standard Krylov subspace. It is well-known that both for classical and extended Krylov spaces, direct unitary similarity transformations exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2015